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Security & Privacy Problems
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What are the unique challenges of
trustworthy issues such as robustness,

privacy, and generalization in Federated
Learning?




How to provide strong privacy guarantees for users in the
trained federated learning system?

How to improve the generalization Server
to unseen data distributions? PRl

local s
updates ,’ feedback
’

Benign dev1ces

Adversarial device

How to improve the robustness to unseen

data manipulations?




Tradeoff between robustness and privacy
Privacy indicates certified robustness

/ Robustness \ Privacy
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Thread model
exploration

Goal: Close the
Trustworthiness Gap

Unified privacy attacks

Privacy-preserving data
generation

Game theoretic modeling
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Privacy-preserving learning

Generalization enabled
privacy-preserving ML

Robustness and generalization
indicates each other

Uncovering connections
with robustness/privacy

Certified ML generalization




DBA: Distributed Backdoor Attack
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distributed attackers

-DBtIs

global trigger local triggers
s ) ——

centralized backdoor attack (current setting) DBA: distributed backdoor attack (ours)

Adversarial goal: using the SAME global trigger to attack the final model

Chulin Xie, Keli Huang, Pin-Yu Chen, Bo Li, DBA: Distributed Backdoor Attacks against Federated Learning. (ICLR)



Stealthy Distributed Backdoor Attack Is More Persistent

* Single-shot attack

Evaluation

@ 100- * Total of 100 agents, 10 agents are
4+ Testing poison type
&0 Local Trigger 1 selected each round
- 801 Local Trigger 2
0 Local Trigger 3 * Every attacker is only selected once
8 60 '*&m Local Trigger 4
z — Global Trigger » Attacker performs scaling in their

40+
n ..
e malicious updates (scale factor = 100)
U 20, Atta.ck t}/pe
o —— Bistabiltee « Test attack success rate in the global
) : «=x+. Centralized
< 20 30 40 50 60 70 model

Rounds

Stealthy distributed backdoor attack is possible in FL.
Distributed backdoor attack is even more persistent than centralized attack in FL.



Numerous Defenses Proposed

Ensemble
Normalization
Distributional detection
PCA detection
Secondary classification
Stochastic

Generative

Training process
Architecture

Retrain

Pre-process input
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Certified Robustness For ML
Against Test-time Attacks

Robustness Verification Approaches
[
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https://sokcertifiedrobustness.github.io/



https://sokcertifiedrobustness.github.io/

Certified Robustness of FL Against Training-Time Attacks

Clients

Standard FL Test Test Malicious FL
Training process Training process
Correct Correct Correct Adversarial
Sever v prediction  prediction prediction  Target
b AN
4
® \ o
- / & °
pad °® o
P9 dh
[ ) o
[ ) dh ——— o T

Certification goal: given one test sample, the prediction of FL model trained with adversarial agents is the
same as the prediction of FL model trained w/o adversarial agents.




CRFL Training: Clipping and Perturbing

Model Updates M (D)
> —_— Clean
Union of local datasets in all clients segregated Mode! Sever Global Model
DZ:{Sl,SQ,...,SN} ..
Clipping and
Perturbing
Model
I _ — 149 R
D —D= {{51}]':1}@:1 Closeness
D/ = {Sll, oo ey S/R—]_) S/R,
SR+1,---, SN} > M(D")
Backdoor Perturbed Data > Poisoned
Sever Global Model
» Per-sample backdoor magnitude §; . .
« the number of poisoned samples g; Clipping .and
* the number of attackers R Perturblng

Poisoned local training datasets



CRFL Testing: Parameter Smoothing

Base classifer h : W, X) — Y y={1,...,C}

Smoothed classifer A

Hg(wa CUtest) - IP)V[/r\»,u(w) [h(W7 xtest) — C]
p(w) = N (w,or?1)

hs(w; Tiest) = arg max HS (w; Tiest)
cey

Take a majority vote over the predictions of the base classifier h
on random model parameters drawn from a probability
distribution u to obtain the votes for each class c.

n(M(D))
Parameter
M(D) Smoothing
Clean  mamm- » Clean he(M(D): x
1 Global Model Prediction s(M(D); Treat)
/
/
Prediction
Df (:UJ(M(D)) ‘ ‘M(M(D,)» Consistency
Model Closeness
Test Example \\
\ M(D/> _____ Poisoned AP
Poisoned > Prediction hs (M<D )’ xt68t>
Global Model
Parameter
Smoothing

p(M(D"))



Certifiably Robust Federated Learning against
Backdoor Attacks

CRFL Training CRFL Testing
® 0 ° Model Updates Parameter
Y ¥ > Smoothing
e 0 0 :Aggregated Model _>G| glelzall\;: o= » Clean
& & g Sever ULAMOCE Prediction
Clipping and ?
Perturbing
glgan/ d Robustness
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2 Test
y§ Example
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Global Model Prediction
Clipping and Parameter
Perturbing Smoothing

Poisoned local training datasets

CRFL Training CRFL Testing

Goal: The FL model trained with adversarial
agents would perform the same with FL model
trained w/o adversarial agents

hS(M(D,)a mtest) — hS(M(D), mtest) =CA
Theorem 1. (General robustness condition) Let hs be de-
fined as in Eq. 1. When n; < % and Assumptions 1, 2, and 3
hold, suppose cy € Y and pa,pp € [0, 1] satisfy

H{A(M(D'); @iest) > pa > PB > max HI(M(D'); Breor),

c#ca
then if
T oy ——
Z(pi’ymmn—;ll&ﬂ) < - ;
i=1 : 9RL% ] (2@(54)—1)
t=tagy+1 ‘

it is guaranteed that
hS(M(D/)’ xtCSt) = hS(M(D)7 xtest) = CA

where ® is standard Gaussian’s cumulative density function



Our Goal: Certifiably Robust FL

Certification Goal: The FL model trained with adversarial agents
would perform the same with FL model trained w/o adversarial agents

D' - D= {{&}"}F, Dy (MD)|[(M(D"))  ha(M(D); Zrear) = ha(M(D'); rear)
Backdoor ___@____’ Model ___9)____’ Prediction
perturbation closeness consistency
Bound the KL divergence of Certify consistent prediction under
parameter smoothed models by parameter smoothed models with
viewing the communication bounded KL divergence based on

iterations as a Markov Kernel Neyman-Pearson lemma



Theoretical Analysis

D' — D = {{5;}, 1L, Lo D (MD)) [(M(D')))-Br ho(M(D); Ttest) = ha(M(D'): Zpest)

Backdoor Perturbation Model Closeness Prediction Consistency

@ Upper bound the model closeness given perturbation magnitude

2R, (pmnm 284 LZ||<5¢||)2 L
e I (2(2)-1)

/
Drr(p(M(D))||p(M(D))) < 2 p
tadv t=t q,+1 k
KL-divergence Contraction coefficient .
_ . . . Data processing
Distributed SGD anayasis in the attacked round in later rounds . litv and
with local convex and |ne(1ua |t.y an ficient
. . . contraction coefficien
Lipschitz gradient of Markov Kernel

assumption

@ Connect the model closeness to prediction consistency
If Drep(u(w) p(w)) S e e=—log (1= (/oz ~ V75)’)

hs (wl; ajtest) — hs (’UJ; ajtest) — CA



Main Theorem

D' — D = {{0;}% }L) ===== Ds(u(MD)||p(M(D")))==hs(M(D); Zrest) = hs(M(D"); Tiest)

Backdoor Perturbation Model Closeness Prediction Consistency
Theorem 1. (General robustness condition) Let hs be de-
ﬁned as in Eq. 1. When 74 S % and Assump[ions ]’ 2’ and 3 COI'Ollary 1 (RObustneSS Condition in Feature LeVel). Us-
hold, suppose cao € Y and pa,p5 € [0, 1] satisfy ing the same setting as in Theorem 1 but further assume
— identical backdoor magnitude ||0|| = ||0;|| fori =1,..., R.
H{A(M(D'); @test) > pa > DB > I HS(M(D'); @est), Suppose cy € Y and p4,Dp € [0, 1] satisfy
then if HA(M(D'); Tyest) > pa > PB > max H(M(D'); Ttest),
c#ca
i (piyr gBigs 2 o —log (1 —a VEV) Te then hs(M(D'); Ziest) = hs(M(D); Test) = ca for all
>_Evimmi —L&[)* < KN |6]| < RAD, where

n o
i=1 Bi

T
i 11 (2(%)-1) s
=tady —log (1 - (/P2 — VPB)? o-t2adv
(1~ (vrz - v75)") The certification is in three

it is guaranteed that RAD —

2 ul 4B 4| L t .
hs(M(DI), -’Etest) = hs(M(D), xtest) = CA, 2RLZ z':zl Pi%iTiTi ng; )2 t:tg-}—l (24) " - 1) |eve|S.
feature, sample, and agent.
where ® is standard Gaussian’s cumulative density function / / \
(CDF) and the other parameters are defined in Section 3. # Adversarial  Poisoning ratio Clipping norm
agents and noise level
* noise level g «  the scale factor y
* norm clipping threshold p; « the aggregation weights for attacker p;
+ the margin between p, and pg «  the local iteration T;
* the number of attackers R *  the local learning rate n;

* the poison ratio qgi/ng;



Experiments on the Robustness Accuracy Tradeoff

* The noise level o, and the parameter norm clipping threshold p;
will affect the robustness-accuracy trade-off.
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Certified accuracy on MNIST, Loan, and EMNIST datasets, under different certified radii

Larger smoothing noise leads to higher certified radius while lower accuracy.



Impacts of the Key Factors on FL Robustness
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Higher scaling factor for attackers leads to

Higher poisoning ratio leads to smaller
smaller certified backdoor radius.
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Evaluation on Robust Aggregations

* Robust aggregation method enables high certified backdoor radius

W

FedAvg Robust aggregation: RFA
0.8 1.0
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Tradeoff between robustness and privacy
Privacy indicates certified robustness

Robustness Privacy ‘\
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Certified ML robustness ’I

Generalization enabled
privacy-preserving ML

Robustness and generalization
indicates each other
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Datalens: Scalable Privacy Preserving Training via Gradient
Compression and Aggregation

Goal: Differentially private data generative model for high-dimensional data
Overview:

1. Split the sensitive data into non-overlapped partitions to train teacher discriminators

2. Calculate the gradients of the teacher discriminators based on generated data
3. Differentially private gradient compression and aggregation
4. Train the student generator with the&aggregated gradient \

High dimensionality Differential privacy
__________
Accessible by Adversary | Not Accessrble by Adversary \
2
II Sensitive Data I
(1) Data Partitioning I
Synthetlc Data . m H Partition 1 Partition 2 Partition n I‘
r _______ IL F | | -F | | | - (Zﬂralnlng
Student Data Generator Teacher 1 Teacher 2 Teacher n
( .F_HJ-J-'-'J'L'-"J'-'L'-"J“
1 (3) Cradlent
|(4) DP Gradient Aggregation ! Compression I
_______ Compressed Compressed Compressed
I [ Aggregated Gradient ]4- [ Gradient 1 ] [ Gradient 2 ] [ Gradient n ] I
‘ TopAgg: noisy gradient compression and aggregation
————————————————————— =

22



Datalens —TopAgg: Gradient Compression

e Gradients from different teacher discriminators

2 N
g + (8,8, g

* For each teacher gradient g( ) , TopAgg performs Gradient

Compression that compresses its dense, real-valued gradient
vector into a sparse sign vector with k nonzero entries:

1) Select top-k dimensions, and set the remaining dimensions to 0

2) Clip the gradient at each dimension with threshold ¢

3) Normalize the top-k gradient vector to get g( )

4) Stochastic gradient sign quantization

2
~ (1)

—1, with probability 19,

~(4)
(i) { 1,  with probability Y,
9; =

2




Privacy Bound for Datalens

e At each training step, calculate the data-independent RDP bound

Lemma 1. For any neighboring top-k£ gradient vector sets G, G differing
by the gradient vector of one teacher, the /5 sensitivity for foum is 2k

Theorem 1. The TopAgg algorithm guarantees ()\,Qk)\/ 02) — RDP, and

thus guarantees (23 + 105_1{6 : 5) -differential privacy for all A > 1 and 6 € (0,1)

* Calculate the overall RDP by the Composition Theorem.
* Convert RDP to DP.



Convergence Analysis

1
* Each teacher model performs: /@ =5 2 £

n€[N]

* Update rule: zi=azi— - > (Q(clip(top-k(F, (x1) . ¢),&) + N (0, 4k))

n€[N]

Theorem: (Convergence of top-K Mechanism w/ w/o Gradient Quantization)
after T updates using learning rate 77, one has:

min{c, 1} 1 . 2 - *
(%S )ﬁ%mm{EIW(x»u EV (@), ) < min{rdd®ie(d= KM} + LyAk + (f(a0) — £(a")/(T7)
+ max{\|a||2 + |lo||M, 2||o]|: } 2L’y(62 + min{cz,M2})

Bias of Top-K
compression

Tradeoff DP noise
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DP Generated Data Utility

Table 1: Performance of different differentially private data generative models on Image Datasets: Classification accuracy of the model
trained on the generated data and tested on real test data under different ¢ (6 = 1073).

N DC-GAN(e=o) | ¢ | DP-GAN PATE-GAN G-PATE GS-WGAN DatalLens
MNIST 09659 | Zio| oson oeer s osors  osoes
Fashion MNIST o802 | Zio| oaws  oas  oes  oem  oroel
CelebA-Gender w9 | Tl s o oey oo o
CelebA-Hai 0767 | Zio| om0 oww  oen  osws  osos
Places36s o | Tio| o owee o  osms  odsrs

* Datalens achieves the state-of-the-art data utility on high-dimensional
image datasets



Data Utility (small privacy budget)

e £ <1

Table 2: Performance Comparison of different differentially private data generative models on Image Datasets under small privacy budget
which provides strong privacy guarantees (¢ < 1, § = 107°).

" MNIST Fashion-MNIST
DP-GAN PATE-GAN G-PATE GS-WGAN DataLens | DP-GAN PATE-GAN G-PATE GS-WGAN DataLens
0.2 0.1104 0.2176 0.2230 0.0972 0.2344 0.1021 0.1605 0.1874 0.1000 0.2226
0.4 0.1524 0.2399 0.2478 0.1029 0.2919 0.1302 0.2977 0.3020 0.1001 0.3863
0.6 0.1022 0.3484 0.4184 0.1044 0.4201 0.0998 0.3698 0.4283 0.1144 0.4314
0.8 0.3732 0.3571 0.5377 0.1170 0.6485 0.1210 0.3659 0.5258 0.1242 0.5534
1.0 0.4046 0.4168 0.5810 0.1432 0.7123 0.1053 0.4222 0.5567 0.1661 0.6478

* Faster convergence when the privacy budget is small
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The goal of UniFed is to systematically evaluate the existing open-source FL frameworks. With 15 evaluation scenarios, we present both qualitative and quantitative evaluation
results of nine existing popular open-sourced FL frameworks, from the perspectives of functionality, usability, and system performance. We also provide suggestions on
framework selection based on the benchmark conclusions and point out future improvement directions. Please find more details in our paper here.

From the functionality and usability survey, we built a decision tree to help users choose the best FL framework for their scenarios. This can be more easily accessed through our

per itHu

UNIFED

All-In-One Federated Learning Platform to Unify Open-Source Frameworks

recommendation system. Finally, we built a wizard to generate the configuration file for testing scenarios.
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Example Decision Tree
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~Config
Generation
~ Ul

Schema Enforced
Config Generation

“aax_num, i
Generate:

Tearning rate

T
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UniFed Wizard

Choose a framework, Generate the config, Run FL experiments
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Framework Integration
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Distributed Task Manager
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30
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32

Learning Rate*

0.01

Loss Func*

error.required-not-set

Optimizer *

error.required-not-set
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Platforms of Trustworthy Learning in Different Domains

Robustncs Verfcation Approches

SN
%04% SOK: Certified robustness for DNNs

A Unified T
Toolbox for
certifying DNNs

sokcertifiedrobustness.github.io Certified Robustness

A Unified Framework
for Certifying
Robustness of
Reinforcement
Learning

copa-leaderboard.github.io

crop-leaderboard.github.io

COPA /CROP

|

= .

Reinforcement Learning

AdvGLUE

The Adversarial GLUE Benchmark

The adversarial
GLUE

Benchmark

rrrrrrrrr

o
9
AAAAAAAA RdVeiue AdveLuepata

adversarialglue.github.io

Natural Language Processing

S,
UNIFED

Jimmy Cricket

),
SAFEBENCH

- v A Unified
A Unified A Unified Environment . G‘““i“ o ,.P.L":prll oo M“g"y Platform for
platform for .’Q FedML . to Evaluate whether , 8 Safety—;ritica/
Federated Agents Act Morally - Scenario i
Learning Fedlearner™ <) Crvplen MWW | | while Maximizing Generation for
Frameworks C 'y p € ? 1F u Rewards - 8 Autonomous
. . . . github.com/hendrycks/ . Vehicles . ) . .
unifedbenchmark.github.io Federated Learning [iminy-cricket Al Ethics safebench.github.io Autonomous Driving
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