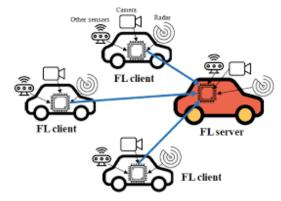


Certifiable Trustworthy Federated Learning: Robustness, Privacy, Generalization, and Their Interconnections

Bo Li

University of Illinois at Urbana-Champaign

Federated Learning in Physical World



Connected Autonomous Driving

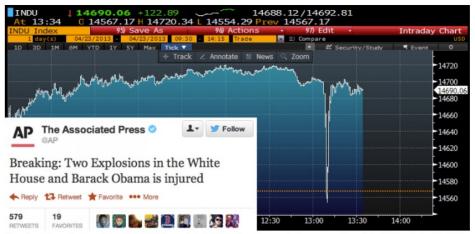
Smart City

Distributed Intelligent Healthcare

Security & Privacy Problems

Syrian hackers claim AP hack that tipped stock market by \$136 billion. Is it terrorism?

By Max Fisher April 23, 2013



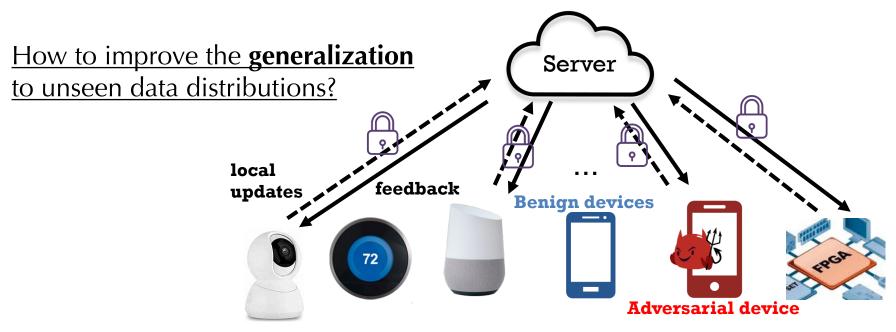
This chart shows the Dow Jones Industrial Average during Tuesday afternoon's drop, caused by a fake A.P. tweet, inset at left.

Privacy Concerns

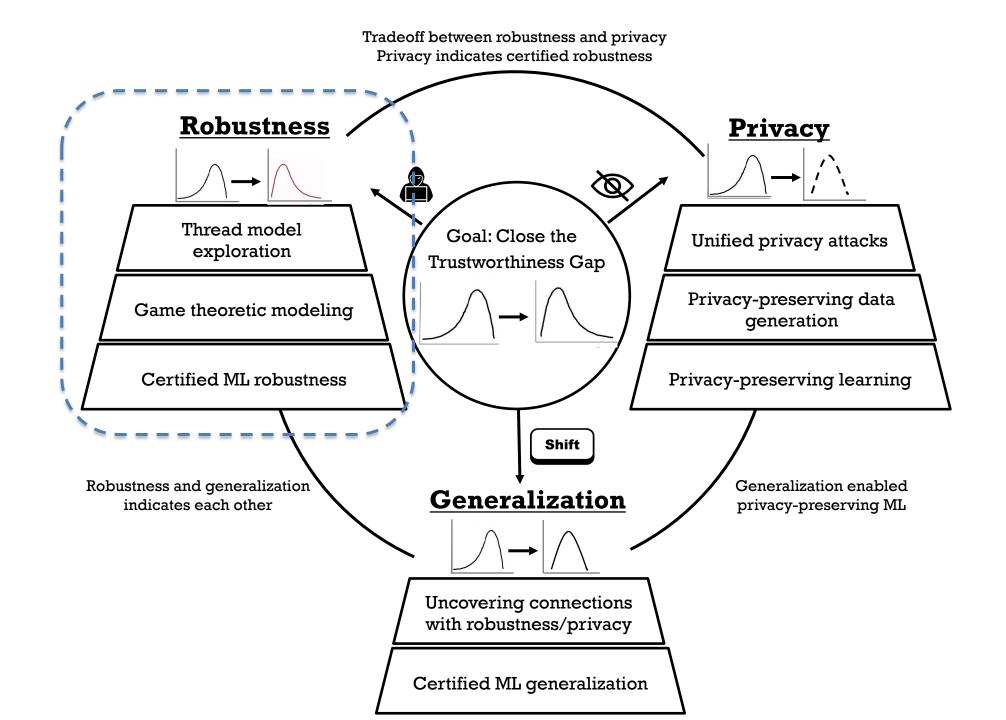
Trading Bot Crashes
The Market

What are the unique challenges of trustworthy issues such as robustness, privacy, and generalization in Federated Learning?

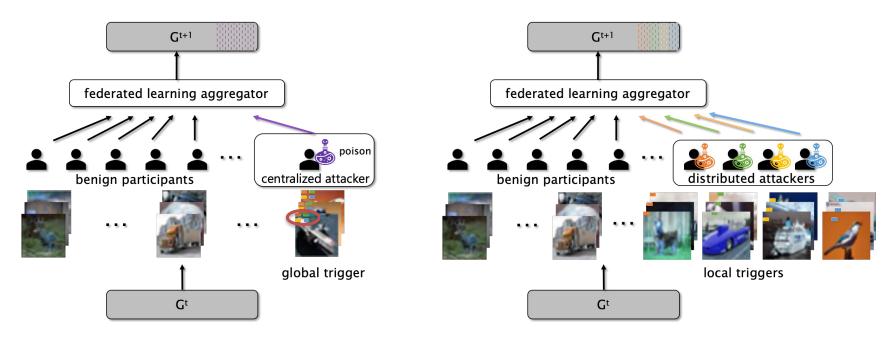
How to provide strong **privacy** guarantees for users in the trained federated learning system?



How to improve the **robustness** to unseen data manipulations?



DBA: Distributed Backdoor Attack



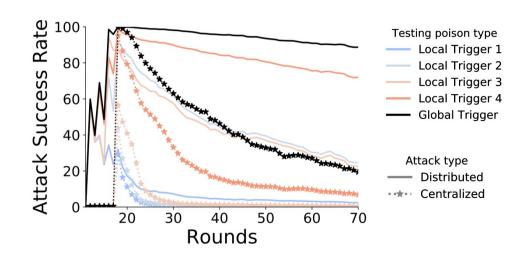
centralized backdoor attack (current setting)

DBA: distributed backdoor attack (ours)

Adversarial goal: using the SAME global trigger to attack the final model

Stealthy Distributed Backdoor Attack Is More Persistent

Single-shot attack

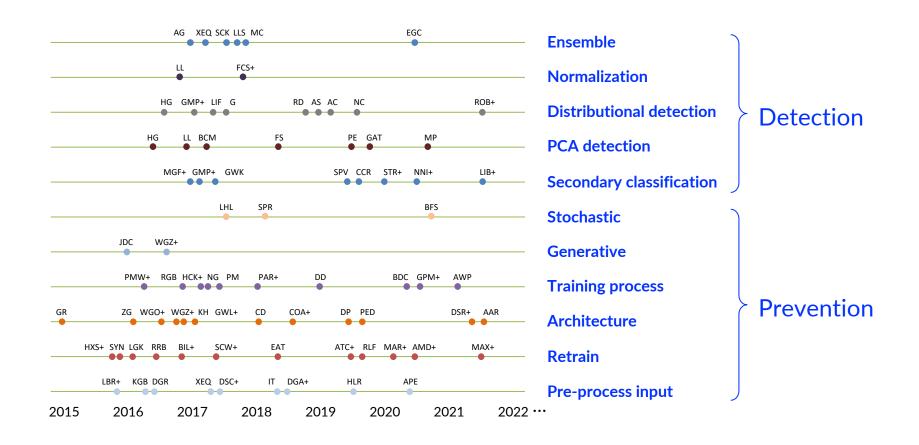


Evaluation

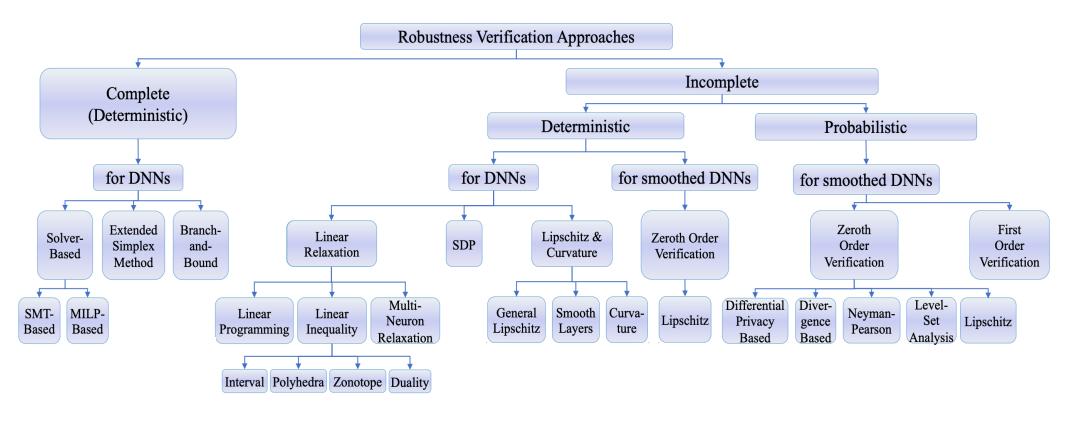
- Total of 100 agents, 10 agents are selected each round
- Every attacker is only selected once
- Attacker performs scaling in their malicious updates (scale factor = 100)
- Test attack success rate in the global model

Stealthy distributed backdoor attack is possible in FL. Distributed backdoor attack is even more persistent than centralized attack in FL.

Numerous Defenses Proposed



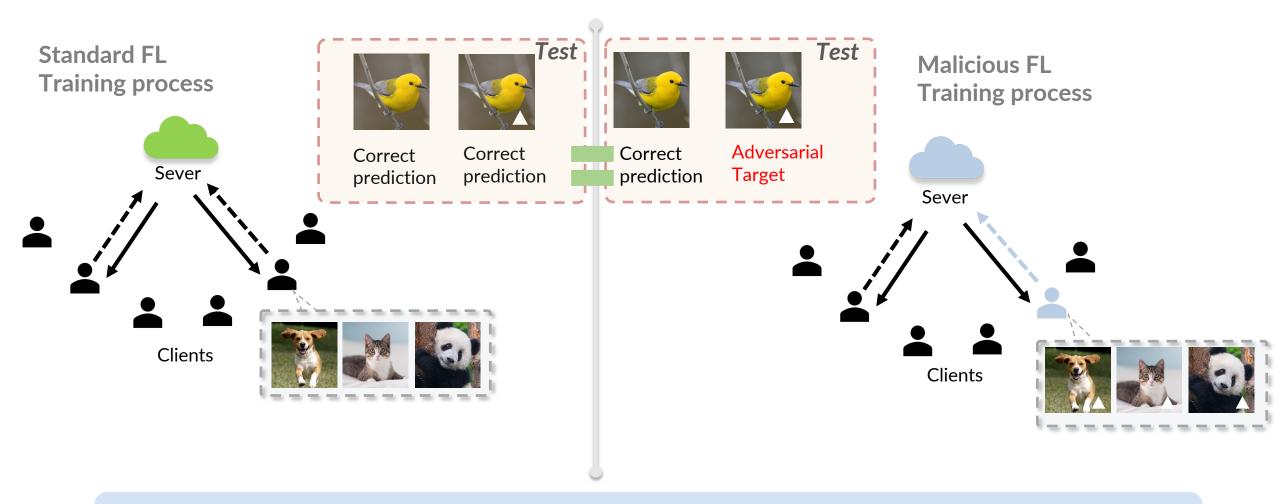
Certified Robustness For ML Against *Test-time* Attacks



https://sokcertifiedrobustness.github.io/

Certifying robustness for ML against training-time attacks? Under FL setting?

Certified Robustness of FL Against Training-Time Attacks



<u>Certification goal</u>: given one test sample, the prediction of FL model trained with *adversarial agents* is the **same** as the prediction of FL model trained w/o adversarial agents.

CRFL Training: Clipping and Perturbing

Union of local datasets in all clients

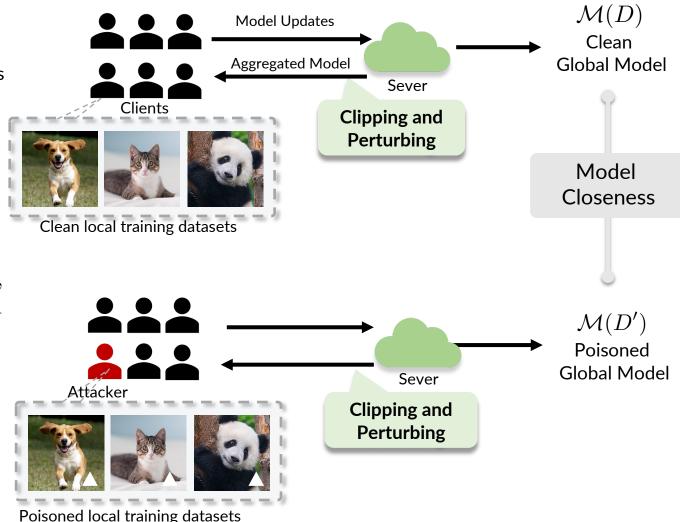
$$D := \{S_1, S_2, \dots, S_N\}$$

$$D' - D = \{\{\delta_i\}_{j=1}^{q_i}\}_{i=1}^R$$

$$D' := \{S'_1, \dots, S'_{R-1}, S'_R, S_{R+1}, \dots, S_N\}$$

Backdoor Perturbed Data

- Per-sample backdoor magnitude δ_i
- the number of poisoned samples q_i
- the number of attackers R



CRFL Testing: Parameter Smoothing

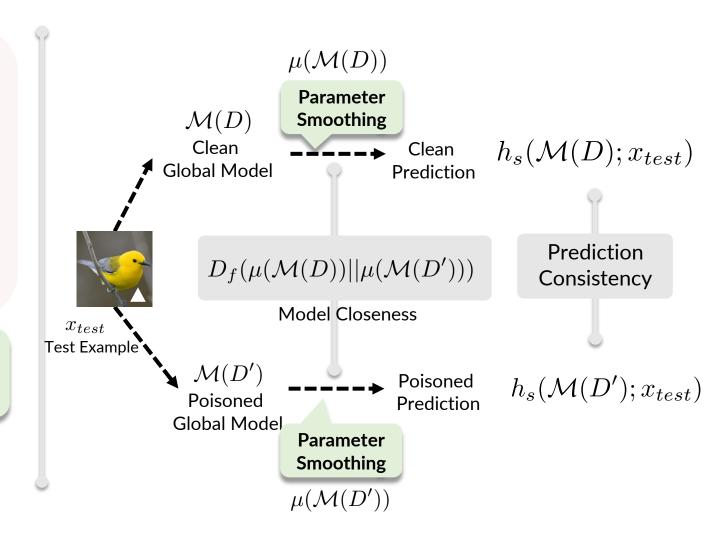
Base classifer $h: (\mathcal{W}, \mathcal{X}) \to \mathcal{Y}$ $\mathcal{Y} = \{1, \dots, C\}$

Smoothed classifer h_s

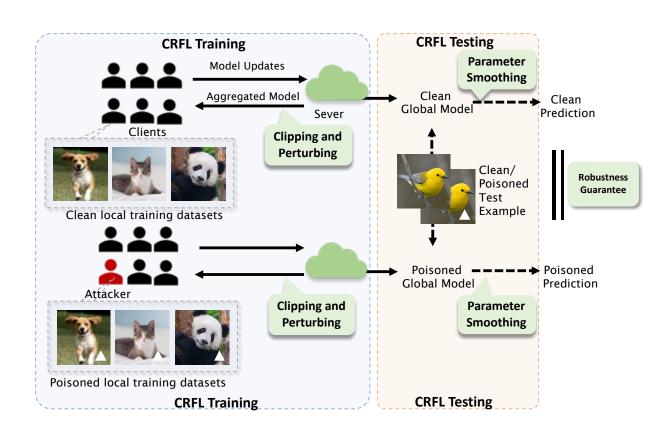
$$H_s^c(w; x_{test}) = \mathbb{P}_{W \sim \mu(w)}[h(W; x_{test}) = c]$$
$$\mu(w) = \mathcal{N}(w, \sigma_T^2 \mathbf{I})$$

$$h_s(w; x_{test}) = \arg\max_{c \in \mathcal{Y}} H_s^c(w; x_{test})$$

Take a majority vote over the predictions of the base classifier h on **random** model parameters drawn from a probability distribution μ to obtain the votes for each class c.



Certifiably Robust Federated Learning against Backdoor Attacks



Goal: The FL model trained with adversarial agents would perform the **same** with FL model trained w/o adversarial agents

$$h_s(\mathcal{M}(D'); x_{test}) = h_s(\mathcal{M}(D); x_{test}) = c_A$$

Theorem 1. (General robustness condition) Let h_s be defined as in Eq. 1. When $\eta_i \leq \frac{1}{\beta}$ and Assumptions 1, 2, and 3 hold, suppose $c_A \in \mathcal{Y}$ and $p_A, \overline{p_B} \in [0, 1]$ satisfy

$$H_s^{c_A}(\mathcal{M}(D'); x_{test}) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \ne c_A} H_s^c(\mathcal{M}(D'); x_{test}),$$

then if

$$\sum_{i=1}^{R} (p_i \gamma_i \tau_i \eta_i \frac{q_{B_i}}{n_{B_i}} \|\delta_i\|)^2 \leq \frac{-\log \left(1 - (\sqrt{\underline{p_A}} - \sqrt{\overline{p_B}})^2\right) \sigma_{\mathsf{t}_{\mathsf{adv}}}^2}{2RL_{\mathcal{Z}}^2 \prod_{t=\mathsf{t}_{\mathsf{adv}}+1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right)},$$

it is guaranteed that

$$h_s(\mathcal{M}(D'); x_{test}) = h_s(\mathcal{M}(D); x_{test}) = c_A$$

where Φ is standard Gaussian's cumulative density function

Our Goal: Certifiably Robust FL

<u>Certification Goal</u>: The FL model trained with adversarial agents would perform the **same** with FL model trained w/o adversarial agents

$$D'-D=\{\{\delta_i\}_{j=1}^{q_i}\}_{i=1}^R \qquad D_f(\mu(\mathcal{M}(D))||\mu(\mathcal{M}(D'))) \qquad h_s(\mathcal{M}(D);x_{test})=h_s(\mathcal{M}(D');x_{test})$$
 Backdoor
$$\qquad \text{Model} \qquad \text{Prediction}$$
 closeness
$$\qquad \text{consistency}$$

Bound the KL divergence of parameter smoothed models by viewing the communication iterations as a Markov Kernel

Certify consistent prediction under parameter smoothed models with bounded KL divergence based on Neyman-Pearson lemma

Theoretical Analysis

$$D'-D=\big\{\big\{\delta_i\big\}_{j=1}^{q_i}\big\}_{i=1}^R \xrightarrow{\bullet \bullet \bullet} D_f(\mu(\mathcal{M}(D))||\mu(\mathcal{M}(D'))) \xrightarrow{\textcircled{2}} h_s(\mathcal{M}(D);x_{test})=h_s(\mathcal{M}(D');x_{test})$$
 Backdoor Perturbation Model Closeness Prediction Consistency

1 Upper bound the model closeness given perturbation magnitude

$$D_{KL}(\mu(\mathcal{M}(D))||\mu(\mathcal{M}(D'))) \leq \frac{2R\sum_{i=1}^{R} \left(p_{i}\gamma_{i}\tau_{i}\eta_{i}\frac{q_{Bi}}{n_{Bi}}L_{\mathcal{Z}}||\delta_{i}||\right)^{2}}{\sigma_{\mathsf{t}_{\mathsf{adv}}}^{2}} \prod_{t=\mathsf{t}_{\mathsf{adv}}+1}^{T} \left(2\Phi\left(\frac{\rho_{t}}{\sigma_{t}}\right)-1\right)$$

Distributed SGD anayasis with local convex and Lipschitz gradient assumption

KL-divergence in the attacked round

Contraction coefficient in later rounds

Data processing inequality and contraction coefficient of Markov Kernel

② Connect the model closeness to prediction consistency

If
$$D_{KL}(\mu(w), \mu(w')) \le \epsilon$$
 $\epsilon = -\log\left(1 - (\sqrt{\overline{p_A}} - \sqrt{\overline{p_B}})^2\right)$ $h_s(w'; x_{test}) = h_s(w; x_{test}) = c_A$

Main Theorem

$$D' - D = \{\{\delta_i\}_{j=1}^{q_i}\}_{i=1}^R \longrightarrow D_f(\mu(\mathcal{M}(D))||\mu(\mathcal{M}(D'))) \longrightarrow h_s(\mathcal{M}(D); x_{test}) = h_s(\mathcal{M}(D'); x_{test})$$

Backdoor Perturbation

Model Closeness

Prediction Consistency

Theorem 1. (General robustness condition) Let h_s be defined as in Eq. 1. When $\eta_i \leq \frac{1}{\beta}$ and Assumptions 1, 2, and 3 hold, suppose $c_A \in \mathcal{Y}$ and $p_A, \overline{p_B} \in [0, 1]$ satisfy

$$H_s^{c_A}(\mathcal{M}(D'); x_{test}) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \ne c_A} H_s^c(\mathcal{M}(D'); x_{test}),$$

then if

$$\sum_{i=1}^{R} (p_i \gamma_i \tau_i \eta_i \frac{q_{B_i}}{n_{B_i}} \|\delta_i\|)^2 \leq \frac{-\log \left(1 - (\sqrt{\underline{p_A}} - \sqrt{\overline{p_B}})^2\right) \sigma_{\mathsf{tadv}}^2}{2RL_{\mathcal{Z}}^2 \prod\limits_{t = \mathsf{t}_{\mathsf{adv}} + 1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right)},$$

it is guaranteed that

$$h_s(\mathcal{M}(D'); x_{test}) = h_s(\mathcal{M}(D); x_{test}) = c_A,$$

where Φ is standard Gaussian's cumulative density function (CDF) and the other parameters are defined in Section 3.

Corollary 1 (Robustness Condition in Feature Level). *Using the same setting as in Theorem 1 but further assume identical backdoor magnitude* $\|\delta\| = \|\delta_i\|$ *for* $i = 1, \ldots, R$. Suppose $c_A \in \mathcal{Y}$ and $\underline{p_A}, \overline{p_B} \in [0, 1]$ satisfy

$$H_s^{c_A}(\mathcal{M}(D'); x_{test}) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \ne c_A} H_s^c(\mathcal{M}(D'); x_{test}),$$

then $h_s(\mathcal{M}(D'); x_{test}) = h_s(\mathcal{M}(D); x_{test}) = c_A$ for all $\|\delta\| < \mathsf{RAD}$, where

$$RAD = \sqrt{\frac{-\log\left(1 - (\sqrt{\underline{p_A}} - \sqrt{\overline{p_B}})^2\right)\sigma_{\mathsf{t_{adv}}}^2}{2RL_Z^2\sum_{i=1}^R p_i\gamma_i\tau_i\eta_i\frac{q_{B_i}}{n_{B_i}})^2\prod_{t=\mathsf{t_{adv}}+1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right)}}$$

Adversarial agents

Poisoning ratio

Clipping norm and noise level

The certification is in three levels: feature, sample, and agent.

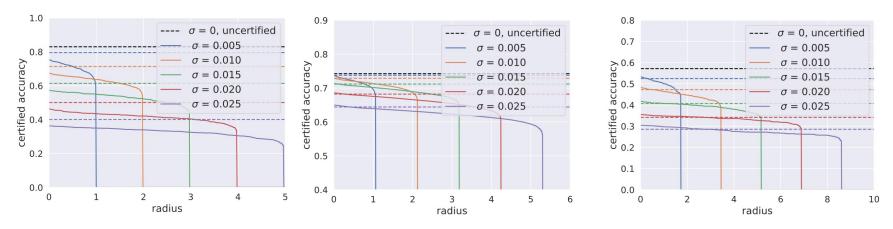
- noise level $\sigma_{\rm t}$
- norm clipping threshold $ho_{
 m t}$
- the margin between p_A and p_B
- the number of attackers R
- the poison ratio q_{Bi}/n_{Bi}

- the scale factor γ
- the aggregation weights for attacker p_i
- the local iteration τ_i
- the local learning rate η_i

Experiments on the Robustness Accuracy Tradeoff

• The noise level σ_t and the parameter norm clipping threshold ρ_t will affect the **robustness-accuracy trade-off**.

$$\mathsf{RAD} = \sqrt{\frac{-\log\left(1 - (\sqrt{\underline{p_A}} - \sqrt{\overline{p_B}})^2\right)\sigma_{\mathsf{t}_{\mathsf{adv}}}^2}{2RL_{\mathcal{Z}}^2\sum\limits_{i=1}^R (p_i\gamma_i\tau_i\eta_i\frac{q_{B_i}}{n_{B_i}})^2\prod\limits_{t=\mathsf{t}_{\mathsf{adv}}+1}^T \left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right) - 1\right)}}$$



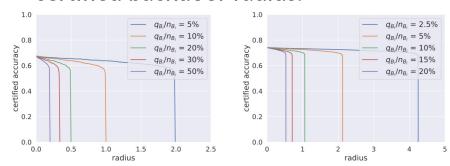
Certified accuracy on MNIST, Loan, and EMNIST datasets, under different certified radii

Larger smoothing noise leads to higher certified radius while lower accuracy.

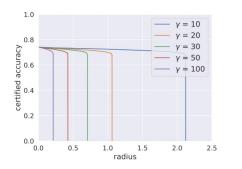
Impacts of the Key Factors on FL Robustness

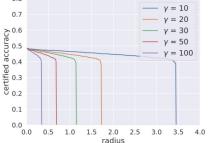
$$\mathsf{RAD} = \sqrt{\frac{-\log\left(1-(\sqrt{\underline{p_A}}-\sqrt{\overline{p_B}})^2\right)\sigma_{\mathsf{t_{adv}}}^2}{2RL_{\mathcal{Z}}^2\sum\limits_{i=1}^R(p_i\gamma_i\tau_i\eta_i\frac{q_{B\,i}}{n_{B\,i}})^2\prod\limits_{t=\mathsf{t_{adv}}+1}^T\left(2\Phi\left(\frac{\rho_t}{\sigma_t}\right)-1\right)}}$$

Higher poisoning ratio leads to smaller certified backdoor radius.

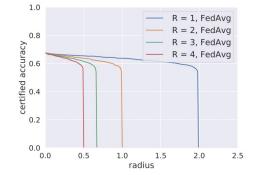


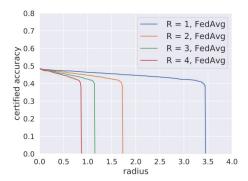
Higher scaling factor for attackers leads to smaller certified backdoor radius.





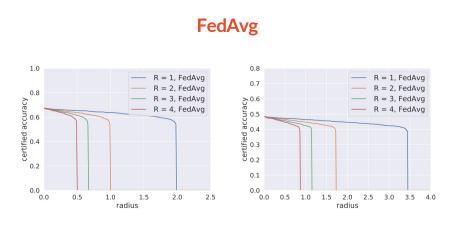
Higher number of attackers leads to smaller certified backdoor radius.



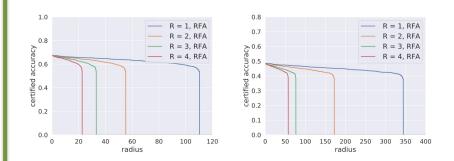


Evaluation on Robust Aggregations

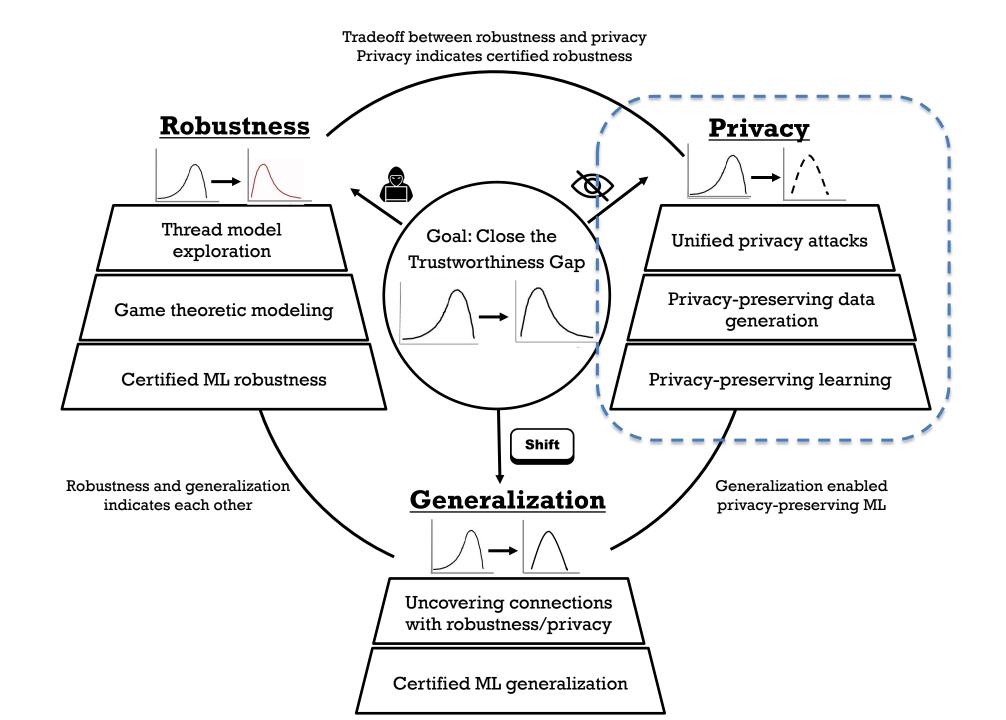
Robust aggregation method enables high certified backdoor radius



Evaluation of certified radius on **FedAvg** under different number of attackers with MNIST; EMNIST



Evaluation of certified radius on **RFA** under different number of attackers with MNIST; EMNIST

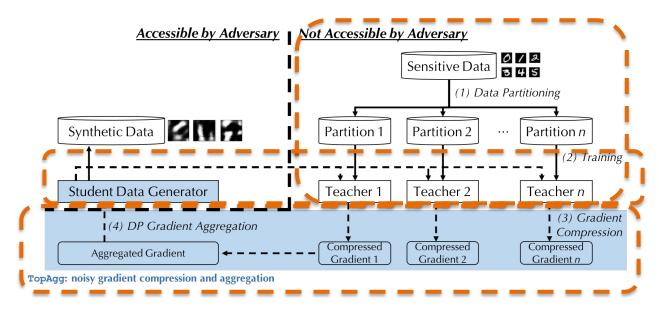


DataLens: Scalable Privacy Preserving Training via Gradient Compression and Aggregation

<u>Goal</u>: Differentially private data generative model for high-dimensional data <u>Overview</u>:

- 1. Split the sensitive data into non-overlapped partitions to train teacher discriminators
- 2. Calculate the gradients of the teacher discriminators based on generated data
- 3. Differentially private gradient compression and aggregation
- 4. Train the student generator with the aggregated gradient

High dimensionality Differential privacy



DataLens -TopAgg: Gradient Compression

Gradients from different teacher discriminators

$$\mathbf{g}_j \leftarrow (\mathbf{g}_j^{(1)}, \mathbf{g}_j^{(2)}, \dots, \mathbf{g}_j^{(N)})$$

- For each teacher gradient $g_j^{(i)}$, TopAgg performs Gradient Compression that compresses its dense, real-valued gradient vector into a sparse sign vector with k nonzero entries:
 - 1) Select top-k dimensions, and set the remaining dimensions to 0
 - 2) Clip the gradient at each dimension with threshold $\it c$
 - 3) Normalize the top-k gradient vector to get $\hat{g}_{j}^{(i)}$
 - 4) Stochastic gradient sign quantization

$$\tilde{g}_{j}^{(i)} = \begin{cases} 1, & \text{with probability } \frac{1+\hat{g}_{j}^{(i)}}{2} \\ -1, & \text{with probability } \frac{1-\hat{g}_{j}^{(i)}}{2} \end{cases}$$

Privacy Bound for DataLens

At each training step, calculate the data-independent RDP bound

Lemma 1. For any neighboring top-k gradient vector sets $\tilde{\mathcal{G}}$, $\tilde{\mathcal{G}}'$ differing by the gradient vector of one teacher, the ℓ_2 sensitivity for f_{sum} is $2\sqrt{k}$

Theorem 1. The TopAgg algorithm guarantees $(\lambda, 2k\lambda/\sigma^2)$ – RDP, and thus guarantees $(\frac{2k\lambda}{\sigma^2} + \frac{\log 1/\delta}{\lambda - 1}, \delta)$ -differential privacy for all $\lambda \geq 1$ and $\delta \in (0, 1)$

- Calculate the overall RDP by the Composition Theorem.
- Convert RDP to DP.

Convergence Analysis

- Each teacher model performs: $f(x) = \frac{1}{N} \sum_{n \in [N]} F_n(x)$
- Update rule: $x_{t+1} = x_t \frac{\gamma}{N} \sum_{n \in [N]} \left(Q \left(\text{clip} \left(\text{top-k} \left(F_n' \left(x_t \right) \right), c \right), \xi_t \right) + \mathcal{N}(0, Ak) \right)$

<u>Theorem</u>: (Convergence of top-K Mechanism w/ w/o Gradient Quantization) after T updates using learning rate γ , one has:

$$\left(\frac{\min\{c,1\}}{d+2}\right)\frac{1}{T}\sum_{t\in[T]}\min\Bigl\{\mathbb{E}\|\nabla f(x_t)\|^2,\mathbb{E}\|\nabla f(x_t)\|_1\Bigr\}\leq \min\Bigl\{\tau_kM^2,c(d-k)M\Bigr\} + \frac{L\gamma Ak}{L\gamma Ak} + (f(x_0)-f(x^*))/(T\gamma) \\ + \max\Bigl\{\|\sigma\|^2 + \|\sigma\|M,2\|\sigma\|_1\Bigr\} + 2L\gamma\bigl(\tilde{\sigma}^2 + \min\bigl\{c^2,M^2\bigr\}\bigr)$$
 Bias of Top-K compression

DP Generated Data Utility

Table 1: Performance of differentially private data generative models on Image Datasets: Classification accuracy of the model trained on the generated data and tested on real test data under different ε ($\delta = 10^{-5}$).

Methods Dataset	DC-GAN ($\varepsilon = \infty$)	ε	DP-GAN	PATE-GAN	G-PATE	GS-WGAN	DataLens
MNIST	0.9653	$\begin{array}{ c c } \varepsilon = 1 \\ \varepsilon = 10 \end{array}$	0.4036 0.8011	0.4168 0.6667	0.5810 0.8092	0.1432 0.8075	0.7123 0.8066
Fashion-MNIST	0.8032	$\varepsilon = 1$ $\varepsilon = 10$	0.1053 0.6098	0.4222 0.6218	0.5567 0.6934	0.1661 0.6579	0.6478 0.7061
CelebA-Gender	0.8149	$\varepsilon = 1$ $\varepsilon = 10$	0.5330 0.5211	0.6068 0.6535	0.6702 0.6897	0.5901 0.6136	0.7058 0.7287
CelebA-Hair	0.7678	$\varepsilon = 1$ $\varepsilon = 10$	0.3447 0.3920	0.3789 0.3900	0.4985 0.6217	0.4203 0.5225	0.6061 0.6224
Places365	0.7404	$\begin{array}{ c c } \varepsilon = 1 \\ \varepsilon = 10 \end{array}$	0.3200 0.3292	0.3238 0.3796	0.3483 0.3883	0.3375 0.3725	0.4313 0.4875

DataLens achieves the state-of-the-art data utility on high-dimensional image datasets

Data Utility (small privacy budget)

• $\varepsilon \leq 1$

Table 2: Performance Comparison of different differentially private data generative models on Image Datasets under small privacy budget which provides strong privacy guarantees ($\varepsilon \le 1$, $\delta = 10^{-5}$).

	MNIST				Fashion-MNIST					
ε	DP-GAN	PATE-GAN	G-PATE	GS-WGAN	DataLens	DP-GAN	PATE-GAN	G-PATE	GS-WGAN	DataLens
0.2	0.1104	0.2176	0.2230	0.0972	0.2344	0.1021	0.1605	0.1874	0.1000	0.2226
0.4	0.1524	0.2399	0.2478	0.1029	0.2919	0.1302	0.2977	0.3020	0.1001	0.3863
0.6	0.1022	0.3484	0.4184	0.1044	0.4201	0.0998	0.3698	0.4283	0.1144	0.4314
0.8	0.3732	0.3571	0.5377	0.1170	0.6485	0.1210	0.3659	0.5258	0.1242	0.5534
1.0	0.4046	0.4168	0.5810	0.1432	0.7123	0.1053	0.4222	0.5567	0.1661	0.6478

Faster convergence when the privacy budget is small

UNIFED Paper GitHub Auto-Run UniFed Leaderboard

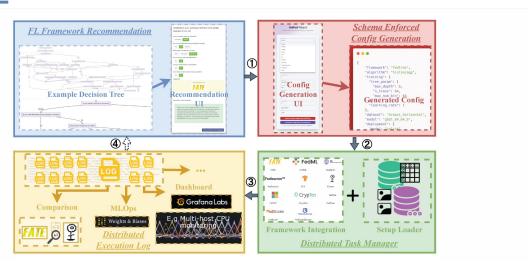
UNIFED

All-In-One Federated Learning Platform to Unify Open-Source Frameworks

The goal of **UniFed** is to systematically evaluate the existing open-source FL frameworks. With 15 evaluation scenarios, we present both qualitative and quantitative evaluation results of nine existing popular open-sourced FL frameworks, from the perspectives of functionality, usability, and system performance. We also provide suggestions on framework selection based on the benchmark conclusions and point out future improvement directions. Please find more details in our paper here.

From the functionality and usability survey, we built a decision tree to help users choose the best FL framework for their scenarios. This can be more easily accessed through our recommendation system. Finally, we built a wizard to generate the configuration file for testing scenarios.

System Design



UniFed Wiz	
Choose a framework, Generate the confi	g, Run FL experiments
Framework*	
Crypten	▼
Algorithm*	
Мрс	*
Dataset*	▼
error.required-not-set	
Model*	
Mlp 128	*
Global Epochs*	
30	
Batch Size*	
32	
Learning Rate*	
0.01	
Loss Func*	▼
error.required-not-set	
Optimizer*	~
error.required-not-set	
Mode *	*
error required-not-set	

28

Platforms of Trustworthy Learning in Different Domains

